<u>Question Bank for PG Course</u> অঙ্ক (Mathematics)

দশম (ক ১) পত্র (Paper - XA(i)) Advanced Differential Geometry : PGMT-XA(i)

- 1. Is the function $f: R \to R$ defined by $f(x) = x^3$, $\forall x \in R$ a homeomorphism from R to R?
- 2. What is the tangent vector to the curve $\gamma(t) = (2 + t, t, t^2)$ in R^3 at the point (1,1,1)?
- 3. If $(x_1, ..., x_n)$ is a local coordinate system in a neighbourhood U of p in the manifold M, then find the standard basis of the tangent space T_pM .
- 4. Find the integral curve $\gamma(t)$ of the vector field $\frac{\partial}{\partial x}$ in R^2 .
- 5. For two smooth functions $f: M \to N$ and $g: N \to K$,

which of the followings is true?

- 1. $(g \circ f)^* = f^* \circ g^*$
- $2. \quad (g \circ f)^* = g^* \circ f^*$
- 3. $(g \circ f)^* = f^* \circ g^* \circ f^*$
- 6. If $(x_1, ..., x_n)$ is a local coordinate system in a neighbourhood U of p in the manifold M, then find the standard basis of the dual tangent space T_p^*M .
- 7. Compute the following

 $(2dx + dy) \wedge (dx - dy)$

8. What is the dimension of the following manifold?

 $\{(x, y, z) \in R^3 : x^2 + y^2 + z^2 = 1\}$

- 9. Which of the following condition is satisfied by linear connection ∇ on M?
 - 1. $\nabla_{fX}Y = f\nabla_XY$ 2. $\nabla_{fX}Y = \nabla_XY$ 3. $\nabla_{fX}Y = f\nabla_YX$
- 10. *"Every Riemannain metric admits a unique Riemannian connection"* is this statement true or false?
- 11. Which of the following expression is/ are true for Riemannian curvature tensor *R*
 - 1. R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0
 - 2. R(X,Y)Z + R(Z,X)Y = 0
 - 3. R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 1
- 12. What is the scalar curvature of the Euclidean Space?

13. Which of the following expression is/ are true for Riemannian curvature tensor field R

$$1. R(X, Y, Z, W) = -R(Y, X, Z, W)$$

$$2. R(X, Y, Z, W) = R(Y, X, Z, W)$$

$$3. R(X, Y, Z, W) = R(Y, Z, Z, W)$$

$$4. R(X, Y, Z, W) = -R(X, X, Z, W)$$

14. If ω is a 1-form, then which of the followings is true?

$$1. \omega \wedge \omega = 1$$
$$2. \omega \wedge \omega = 0$$
$$3. \omega \wedge \omega = -1$$

15. What is the dimension of the tangent space of the manifold = $\{(x, y) \in \mathbb{R}^2 : y > 0\}$?